Skip to main content

🎉 We released Spotlight 1.6.0 check it out

Version: Next

Create image embeddings with Huggingface

We use the Huggingface transformers library to create an embedding for a an image dataset.

Use Chrome to run Spotlight in Colab. Due to Colab restrictions (e.g. no websocket support), the performance is limited. Run the notebook locally for the full Spotlight experience.

Open In Colab
  • df['image'] contains the paths to the images in the dataset


Imports and play as copy-n-paste functions

# Install dependencies
# Imports
!pip install renumics-spotlight transformers torch datasets
# Play as copy-n-paste functions
import datasets
from transformers import AutoFeatureExtractor, AutoModel
import torch
from renumics import spotlight
import pandas as pd

def extract_embeddings(model, feature_extractor, image_name='image'):
"""Utility to compute embeddings."""
device = model.device

def pp(batch):
images = batch["image"]
inputs = feature_extractor(images=images, return_tensors="pt").to(device)
embeddings = model(**inputs).last_hidden_state[:, 0].cpu()

return {"embedding": embeddings}

return pp

def huggingface_embedding(df, image_name='image', inplace=False, modelname='google/vit-base-patch16-224', batched=True, batch_size=24):
# initialize huggingface model
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname)
model = AutoModel.from_pretrained(modelname, output_hidden_states=True)

# create huggingface dataset from df
dataset = datasets.Dataset.from_pandas(df).cast_column(image_name, datasets.Image())

#compute embedding
device = "cuda" if torch.cuda.is_available() else "cpu"
extract_fn = extract_embeddings(, feature_extractor,image_name)
updated_dataset =, batched=batched, batch_size=batch_size)

df_temp = updated_dataset.to_pandas()

if inplace:

df_emb = pd.DataFrame()
df_emb['embedding'] = df_temp['embedding']

return df_emb

Step-by-step example on CIFAR-100

Load CIFAR-100 from Huggingface hub and convert it to Pandas dataframe

dataset = datasets.load_dataset("renumics/cifar100-enriched", split="train")
df = dataset.to_pandas()

Compute embedding with vision transformer from Huggingface

df_emb = huggingface_embedding(df, modelname="google/vit-base-patch16-224")
df = pd.concat([df, df_emb], axis=1)

Reduce embeddings for faster visualization

import umap
import numpy as np
embeddings = np.stack(df['embedding'].to_numpy())
reducer = umap.UMAP()
reduced_embedding = reducer.fit_transform(embeddings)
df['embedding_reduced'] = np.array(reduced_embedding).tolist()

Perform EDA with Spotlight

df_show = df.drop(columns=['embedding', 'probabilities']), port=port, dtype={"image": spotlight.Image, "embedding_reduced": spotlight.Embedding})